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Ion Pair Neutralization: Solution 
of Smoluchowski Equation 
for Coulomb Field 
N. H. MARCH 

Theoretical Chemistry Department, University of Oxford, 
5 South Parks Road, Oxford OX1 3TG. England. 

(Rereitred 22 March 1988) 

In pioneering work, Onsager solved the Smoluchowski equation to obtain the probability 
that a pair of ions in a dielectric medium will escape mutual neutralization in the long- 
time limit. In the present paper, an approximate solution of the Smoluchowski equation 
for a Coulomb field is constructed; general enough to allow the kinetics of the process to 
be treated. The connection with Onsager’s treatment, and the later study of Mozumder, is 
briefly discussed. 
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1 INTRODUCTION 

In pioneering work, Onsager’ solved the Smoluchowski equation for a 
pair of ions in a dielectric medium. There he studied, in particular, the 
probability that the pair will escape mutual neutralization, in the long- 
time limit t tends to infinity. His result was that this probability as 
t + co is given by the reciprocal of the Boltzmann factor with respect to 
the pair potential energy calculated at the initial pair separation. 

While Onsager gave the description of the steady-state situation in 
the extreme long-time limit, he did not concern himself with the kinetics 
of the process. To understand, for instance, radiation-induced lumines- 
cence in organic liquids, one needs to know such kinetics, as 
Mozumder’ especially has emphasized. We shall adopt precisely the 
same framework as Mozumder as starting point; this is summarized in 
Section 2 below. Whereas Mozumder used the so-called method of 
“prescribed diffusion,” we here propose an approximate solution 
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transcending this, which is set out in Section 3. Section 4 constitutes a 
brief summary, together with suggestions for further work in this area. 

2 SMOLUCHOWSKI EQUATION FOR A BARE 
COULOMB FIELD 

To study the kinetics of charge neutralization within the framework of 
random walk in a Coulomb field, we follow Refs 1 and 2 by defining the 
probability P(ro; r, t)dr that the ion pair will be between the distances r 
and r + dr at time t if the random walk started from a thermalization 
distance ro at zero time. For time t considerably greater than the 
relaxation time for the random walk process, the above probability P 
satisfies the Smoluchowski equation3 given by 

dP 
- = DV2P - f - ’V. (PF) .  
at (2.1 ) 

Here the friction coefficient f is defined as the ratio of the impressed 
force to the drift velocity. Einstein4 gave the relation between f and the 
diffusion constant D as 

The mutual force 9 is taken in the present context to be given by 
Coulomb’s Law: 

e being the magnitude of the electronic charge and E the dielectric 
constant of the medium. Then one obtains from Eq. (2.1) the differential 
equation 

ap 
~ = D[V2P + a(r / r3) .  V P ] ,  
at (2.4) 

where the length a, which is the distance at which the potential energy 
of the ions is numerically equal to k,T, is given by 

c1 = e2/Ek,T; (2.5) 
the so-called Onsager length2. 
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3 INTEGRAL EQUATION FORM OF SMOLUCHOWSKI 
EQUATION 

In the limit a + 0, one has the solution, Po say, of Eq. (2.4) as 

exp[-(r - r0)'/4Dt] 
(47~Dt )~ '~  

Po(ro; r, t )  = ~ ~~ (3.1) 

The first important step in obtaining an approximate solution of 
Eq. (2.4) when a # 0 is to convert it to integral equation form. This we 
can conveniently do by writing the probability P in the form 

P = Po exp( - t U) .  (3.2) 

The differential equation for U is then readily found by substituting 
Eq. (3.2) in Eq. (2.4). The result is, with the time variable conveniently 
rescaled as ,8 = 2Dt: 

V l n P o - - - U  + ( r - r , ) . V U  
2 0  " I  

P' - $V2U + a -- (VU)Z, D (3.3) 

use having been made of the form (3.1). 
The above Eq. (3.3) has been written in a form closely resembling 

that which can be derived from the Bloch equation for the canonical 
density matrix. In Appendix 1, we then follow the .mathematics of this 
case, as set out by March and Stoddart,' to write down an integral 
equation for U (this is Eq. (A1.4)). In this integral equation, V U  and its 
square appear. The approximation of prescribed diffusion assumes that 
U is independent of r, so that these terms then vanish. 

3.1 

Motivated by the above assumption, we therefore form the approxima- 
tion U ,  by neglecting these quantities involving grad U inside the 
integrals in Eq. (Al.4). The result is then 

Approximate Solution of Integral Equation 

where Qo = Po/",. Defining the quantity J by 
B 

WO, r l .  r, B) = j o d B , P ~ Q ~ ,  (3.5) 
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the evaluation of which is discussed in Appendix 1, one has finally 

Equation (A3.6) already transcends prescribed diffusion in that U is 
plainly dependent on r; not just on ro and t as in Ref. 2. If one had 
reasons to seek higher accuracy, U ,  from Eq. (3.6) could now be 
inserted in the V,,U terms in Eq. (A1.4) and in this way a second 
iterative solution U ,  could be generated. 

4 SUMMARY 

The main result of the present work is the approximate solution (3.4) of 
the Smoluchowski Eq. (2.4) for a bare Coulomb field. The claim that 
this solution transcends prescribed diffusion is based on the fact that 
this solution is dependent on r, whereas prescribed diffusion assumes U 
is wholly independent of r. Nevertheless, in writing Eq. (3.4), appeal has 
been made to this approximation, and further iterations may well be 
needed beyond Eq. (3.4) in cases when the effect of a is large. 

For the future, it would seem to be of interest to make sample 
calculations, for fixed ro and t ( = p )  say, of the r dependence of U , ;  as 
its (assumed) slow spatial variation underlies all approximations of the 
kinetics of the process under discussion to date. However, at the present 
time it would seem necessary to carry out these integrations numeri- 
cally. 

Should this be done in the future, it would then remain of interest to 
calculate the probability W(r,,, t )  that the ion pair will remain separate 
at time t starting their random walk at a distance ro (see Appendix 2). 
This is to be obtained either from Eq. (A2.6), or perhaps more directly 
by inserting U ,  from Eq. (3.6) into Eq. (3.2), and integrating this over r 
through the whole of space. The examples treated by Mozumder2 
should then be re-worked in order to assess the changes in the kinetics 
resulting from transcending prescribed diffusion. One important point 
is that while we expect the solution proposed here to lead back to 
Onsager’s long-time limit W = exp( - a/ro) because, as Mozumder 
showed, this follows from his use of the prescribed diffusion approxima- 
tion, we have not so far succeeded in obtaining this limit analytically in 
the method used in this paper. 
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Appendix 1 Integral formulation of Smoluchowski 
equation 

Writing the probability P in the Smoluchowski Eq. (2.4) in the product 
form (3.2), the function U satisfies the non-linear partial differential 
Eq. (3.3). The purpose of this Appendix is to transform this to an 
integral equation. 

Using the approach of March and Stoddart,’ one introduces the 
operator L given by 

(Al.l) L(rr0p) = f l ~  + (r - ro) .  V, - fov,’. 
The equivalent integral Eq. to (3.3) may then be found using the Green 
function G for the operator 1 + L :  

a 
aP 

where 8 is the usual Heaviside function. This Green function satisfies 

(1 + m o P ) } G ( r r o r l B P 1 )  = - r1)W - 81). (‘41.3) 

Then one obtains the desired integral equation for U as 

(A1.4) 
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To begin the iteration of this integral equation for U ,  one can insert 
the essential approximation of prescribed diffusion into the right-hand 
side. This corresponds to neglecting V,,U and its square and yields a 
first approximation U given explicitly by Eq. (3.4), when use is made of 
the form of P o  in Eq. (3.1). 

While Eq. (A1.4) is the main result of this Appendix, we will also 
discuss briefly a route to assist the evaluation of J defined in Eq. (3.5) 
which appears in the approximate solution (3.4) of Eq. (A1.4). Taking 
the Laplace transform 9 of J ,  one can write Eq. (3.5) as 

9 J  = LfP,-YQ,. (A1.5) 

Denoting the Laplace transform variable corresponding to /3 by E ,  one 
finds from Eq. (3.1) that 

(A 1.6) 

and 

d2i exp( - f i E  a) 1 
-~ __ + - exp(-,/%a) (A1.7) Y Q O = - ~ ~  - a2 2aa3 

with a = ( r l  - ro(.  Inserting Eqs (A1.6) and (A1.7) into Eq. (A1.5), one 
can calculate J by performing the inverse Laplace transform; the 
analytical closed form that has been found for J is then 

(A1.8) 

with b written for Ir - rlI. 

Appendix 2 Convolution form for probability that ion 
pair will remain separate after time t 

Writing the product form (3.2) as 

P = P o F  (A2.1) 

let us define its Fourier transform on r by 

P(ro; r, t )  exp( - ip . r)dr. (A2.2) 
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The Fourier transform of a product has the form of a convolution and 
hence, writing 

po(ro; p, t )  = 1 Po(r,; r, t )  exp( - ip . r)dr (A2.3) 

with a corresponding definition for F, one can express Eq. (A2.2) in the 
alternative form 

w(r,,; p, t> = J po(ro, p’ - p, t)F(r,, p’, OW. (A2.4) 

The desired probability that the ion pair will remain separate at time 
t, starting their random walk at  a distance ro is 

W(ro, 0, t )  = 

which, from Eq. (A2.4) is given by 

P(ro; r, t)dr I 
w(r0, 0, t )  = Po(ro; P‘, t)&r,; P’, Wp’. i 

As t tends to zero, Po tends to unity, and hence 

W(ro; 0, 0) = 1 = F(ro; p’, t)dp’. s 

(A2.5) 

(A2.6) 

(A2.7) 

In contrast, in the long time limit, F becomes independent of r, and one 
must regain Onsager’s result’ 

lim W(ro, 0, t )  = exp( - cl/ro) (A2.8) 
r+a 

as the steady-state solution. 
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